
Simulation of Simplicity: A Technique
to Cope with Degenerate Cases
in Geometric Algorithms
HERBERT EDELSBRUNNER and ERNST PETER MUCKE
University of Illinois at Urbana-Champaign

This paper describes a general-purpose programming technique, called Simulation of Simplicity, that
can be used to cope with degenerate input data for geometric algorithms. It relieves the programmer
from the task of providing a cons:istent treatment for every single special case that can occur. The
programs that use the technique tend to be considerably smaller and more robust than those that do
not use it. We believe that this technique will become a standard tool in writing geometric software.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]:
Nonnumerical Algorithms and Problems-geometricaZ probkms and computation.~; G.4 [Mathemat-
ical Software]: Reliability and Robustness; 1.l.m [Algebraic Manipulation]: Miscellaneous; 1.35
[Computer Graphics]: Computational Geometry and Object Modelling-geometric algorithms,
languages, and systems

General Terms: Algorithms, Reliability

Additional Key Words and Phrases: Computational geometry, degenerate data, determinants, imple-
mentation, perturbation, programming tool, symbolic computation

1. INTRODUCTION
This paper introduces a general technique that can be used to cope with degen-
erate cases encountered by computer programs. Consider, for example, a program
that sorts an array of integers using a comparison as a primitive operation. A
special, or degenerate, case occurs when the program attempts to decide which
one of two equal numbers is smaller than the other. A typical way to resolve this
tie is to pretend that the number with the smaller index is smaller (assuming the
integers are indexed, e.g., by their positions in an array). Or think of Kruskal’s
algorithm for constructing a minimum spanning tree of a weighted graph (see
[l]). At each step it chooses the shortest edge that can be added to the current
collection of edges without creating a cycle. If this edge is not unique, then any

Research of both authors was supported by Amoco Foundation Faculty Development grant CS 1-6-
44862. It was partially carried out while both authors were with the Institutes for Information
Processing at the Technical University of Graz, Austria. The first author also acknowledges support
by the National Science Foundation under grant CCR-8714565.
Authors’ address: Department of Computer Science, University of Illinois at Urbana-Champaign,
1304 West Springfield Ave., Urbana, IL 61801.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1990 ACM 0730-0301/90/0100-0066 $01.50

ACM Transactions on Graphics, Vol. 9, No. 1, January 1990, Pages 66-104.

H. Edelsbrunner and E. P. Miicke l 67

(a) (b) (cl (4 (4 (f)
Fig. 1. The different cases in the Parity algorithm.

one of the candidate edges is taken. The thus generated minimum spanning tree
is therefore not unique unless we specify deterministic rules to break ties.

In both problems, sorting and constructing minimum spanning trees, the
special cases are easily dealt with, partly because the ties can be broken arbitrarily
without creating inconsistencies. The situation is usually far more complicated
for geometric problems. Consider, for example, the following seemingly straight-
forward algorithm for the point-in-polygon problem that is sometimes called the
Parity Algorithm:

-Let r be the horizontal half-line whose left endpoint is the test point.
-Count the number of intersections between r and the edges of the polygon. If

that number is odd, then the test point lies within the polygon, and if the
number is even, then it lies outside the polygon.

As pointed out in [12], it is not a trivial matter to implement this algorithm,
even if we assume that the test point does not lie on the boundary of the polygon.
There are only two nondegenerate cases: Either the intersection between r and
an edge e is empty, or r crosses e (see Figure la and b). There are, however, four
degenerate cases (as illustrated in Figure lc-f) that have to be taken into account.

A correct answer is obtained if cases (c) and (e) are counted as one crossing
and cases (d) and (f) are not counted at all. If we write the code for the above
algorithm, we realize that a substantial amount of the effort is required to cover
the four degenerated cases. Observe also that there are several seemingly plausible
ways to treat the degenerate cases and that some of them lead to incorrect
algorithms. We appeal to the imagination of the reader to envision the bizarre
structure of degenerate cases one encounters in generalizing the point-in-polygon
problem to three or higher dimensions. Another problem with a set of degenerate
cases that is considerably richer than the one of the point-in-polygon problem is
obtained if one intersects a polygon with a geometric object that is more
complicated than a half-line.

When it comes to implementing geometric algorithms, degenerate cases are
very costly, in particular, if there are many such cases that have to be distin-
guished. This is caused by the positive correlation between the number of
degenerate cases and a variety of factors that contribute to the overall cost of a
piece of software. These factors include the length of the program, which, for
itself, correlates positively with the amount of time required to write it, to debug
it, and to maintain it. Of course, the degree of robustness of the program decreases
with increasing complication. The correctness of a program relies on the consis-
tent treatment of all different cases. In this context, it is worthwhile to mention

ACM Transactions on Graphics, Vol. 9, No. 1, January 1990.

68 l Simulation of Simplicity

that more efficient algorithms tend to be more complicated and also more sensible
to slight inconsistencies in treating degenerate cases.

This paper presents a general technique, called Simulation of Simplicity (SOS),
that can be used to cope with the problems mentioned above. Intuitively, it
simulates a conceptual perturbation of the input data that eliminates all
degeneracies. We hasten to mention that the perturbation is never ever com-
puted-it is assumed to be arbitrarily small, although not vanishing, which is
enough to simulate the nandegenerate topology. Another interpretation of the
technique views it as a general way to break ties consistently. The tie-breaking
part of the code appears in the lowest level of the algorithm, namely, in the
procedures that implement the needed primitive operations. Different techniques
following the same main approach have recently been suggested in [23] and [24].
A large part of this paper is devoted to demonstrating that the overhead in time
caused by the use of the more elaborate primitive procedures required by SOS is
negligible.

The outline of this paper is as follows: Section 2 presents the general idea of
the technique and works out some guidelines needed to implement it effectively.
Section 3 considers a class of problems for finite point sets that can be solved
using a common set of geometric primitives. It also discusses how the perturbation
influences the geometric primitives. Section 4 demonstrates efficient implemen-
tations of the primitive operations. In Section 5 we show that the geometric
primitives introduced for point set problems can be used to solve a variety of
other problems defined for polygons, hyperplanes, circles, spheres, and other
geometric objects. Finally, in Section 6 we discuss the perturbation technique
and its limitations.

2. SOS: THE GENERAL IDEA

Degeneracies occur with probability zero if we draw a finite number of geometric
objects, each represented by a finite set of numbers from the (infinite) set of all
such objects, provided there is no bound on the precision of the numbers used.
In real-life computing, this is not the case; that is, there is only a finite set of
available numbers and thus a bound on the precision that can be achieved. As a
consequence, we are doomed to work with degenerate data. On the other hand,
even infinite precision does; not guarantee the nonexistence of degeneracies. This
section gives the general outline of a technique called the Simulation of Simplicity
(SoS)-we use simple as a s:ynonym for nondegenerate-which allows us to neglect
degeneracies when we writ,e programs. A similar but less elaborate method has
been used to solve degenerate linear programs. This leads to the implementation
of the simplex algorithm referred to as the “lexicographical method” (see [3], [4],
[6], or [7] for details). In computational geometry, this technique has been used
in a couple of papers, including [8] and [ll], to avoid the otherwise necessary
discussion of degenerate cases. This paper presents the theoretical foundations
of SOS, as well as details of its implementation.

The basic idea of SOS is to perturb the given objects slightly, which amounts
to changing the numbers that represent the objects; these numbers are called the
coordinates or the parameters of the objects. It is important that the perturbation
is small enough so that it does not change the nondegenerate position of objects
ACM Transactions on Graphics, Vol. 9, No. 1, January 1990.

H. Edelsbrunner and E. P. Miicke l 69

relative to each other. Coming up with such a perturbation is rather difficult and
may require much higher precision than used for the original set of objects. For
this reason, we perform the perturbation only symbolically by replacing each
coordinate by a polynomial in E. The polynomials will be chosen in such a way
that the perturbed set goes toward the original set as E goes to zero. We will see
that it is not important to know the exact value of E to perform the simulation;
rather, it is sufficient to assume that E is positive and sufficiently small. Thus, it
will be possible to use E as an indeterminant and to handle primitive operations
symbolically.

The future user of SOS will not have to be concerned with the role that E plays
in the perturbation or with the symbolic manipulation of polynomials. We may
think of SOS as a package that provides the primitive operations needed for a
certain computation. Ideally, the inside of these operations is hidden from the
user, who communicates with them as one would with an oracle. It turns out that
a large number of geometric problems can be solved using a surprisingly small
number of primitives. Some of these primitives will be discussed in the following
three sections. This section continues to develop the general ideas on which SOS
is based.

One of the goals of SOS is to perturb a set of objects such that all degeneracies
disappear. A degeneracy is something that is not defined in general; its definition
depends on the problem at hand. More specifically, it depends on the primitive
operations used to solve the problem. For example, a primitive operation in the
point-in-polygon algorithm described in the Introduction tests the intersection
of a horizontal half-line and a line segment. A degeneracy occurs if the half-line
contains one or both endpoints of the line segment. A set of objects is now called
simple, or nondegenerate, or in general position, if it does not contain any
degeneracy. We thus define “simplicity” relative to the primitives used to solve
a problem.

This paper considers only topological primitives, that is, operations that test
some given input and classify it as one of a constant number of possible cases.
This is in contrast to operations that compute new objects such as the intersection
of a half-line and a line segment. In most programs, such an object serves only
as an intermediate result anyway; but an intermediate result can as well be
represented implicitly as a collection of pointers and a tag that tells us in what
sense the objects identified by the pointers determine the (implicit) result. To
simplify our discussion even further, we restrict our attention to primitives with
three possible outcomes that we represent by +l, 0, and -1, where 0 indicates a
degeneracy, and +l and -1 distinguish between the two nondegenerate cases.
Tests that distinguish between more than two nondegenerate cases can be
obtained by combining several ternary tests.

If we think of a primitive operation as a function f that maps a high-dimensional
point (whose coordinates describe the input objects) to +l, 0, or -1, then f-‘(O)
represents the set of degenerate inputs. One requirement for this set is that its
measure in this high-dimensional space is zero-otherwise, it is unreasonable to
call its points degenerate. A set of n objects, given by d parameters each, can be
thought of as a point in nd dimensions. If f takes k < n objects as input, then
f-‘(O) is a surface of measure zero in U-dimensional space. This surface defines
another zero-measure surface in nd dimensions that is obtained by embedding

ACM Transactions on Graphics, Vol. 9, No. 1, January 1990.

70 l Simulation of Simplicity

f-‘(O) in the kd-d’ imensional subspace defined by the k objects and extending it
orthogonal to this subspace along the other coordinate axes. Other combinations
of k objects provide additional zero-measure surfaces that, altogether, decompose
the nd-dimensional space into faces of various dimensions. A cell is an nd-
dimensional face of this decomposition, and all points of a cell correspond to
nondegenerate sets of objects. A degenerate set corresponds to a point x in the
union of the surfaces, den.oted by 9. Since 9 has measure zero, every nonempty
open ball around this point contains a point y of some cell. Moving x: to y
corresponds now to perturbing the set of objects that x corresponds to such that
all degeneracies disappear. This shows that a perturbation to a nondegenerate
set is always possible even if the amount of perturbation is severely limited.
Recall that another requirement for the perturbation is that it does not change
any nondegenerate subconfiguration. This means that we should not move x
across a surface it did not belong to initially. This can always be guaranteed if
we choose the open ball small enough that it does not intersect any surface that
does not contain the initial position of x.

To follow the forthcoming reasoning, it is not necessary for the reader to
understand the topology of the nd-dimensional space as indicated in the above
paragraph. Nevertheless, this view of the problem sheds some light on the nature
of degeneracy. It also explains why there is always a small enough perturbation
that removes all degeneracies. Below, we discuss such perturbations more specif-
ically and address a few questions concerning the efficient implementation of
SOS.

Simplicity is simulated by applying a particular perturbation to a set
P=lpo,p1,.. . , pnel 1 of n geometric objects

Pi = tri,l, ri,2, * - * f r&d), Osisn-1,

each specified by d parameters. It will be important that each object has a unique
index between 0 and n - 1. The objects are in arbitrary, and therefore not
necessarily in general, position. The perturbation of P is realized by replacing
each parameter by a polynomial in E. We define

P(E) = (pi(&) =: (Ki,l(E), Ti,2(&), . . . , Ti,d(E)) IO % i 5 n - l},

where

Ti,j(E) = Ti,j + E(i, j) for O<isn-1, lsjsd,

and &(i, j) is a polynomial in c that goes to zero when E goes to zero. We will refer
to the new parameters rl,j(e), the new objects Pi(e), and the new set P(c) as the
&-expansions of the origirml parameters ri,j, the original objects pi, and the original
set P, respectively. The choice of the polynomials c(i, j) will be guided by three
requirements SOS has to meet.

(1) P(E) must be simple :if E > 0 is sufficiently small.
(2) P(E) must retain all nondegenerate properties of the original set P.
(3) The computational overhead caused by simulating P(e) should be negligible.

As mentioned before, condition (2) is automatically met if E is small enough.
To satisfy (l), it is sufficient to choose the E (i, j) such that there is no nonempty
open interval I with the .property that P(e) is not simple if E I. Think of P as a
ACM Transactions on Graphics, Vol. 9, No. 1, January 1990.

H. Edelsbrunner and E. P. Mticke l 71

point x in nd dimensions, and let X(E) be the point that corresponds to P(E). The
points X(E), E > 0, form a one-dimensional curve C in nd dimensions. Thus, (1) is
satisfied if C n 9 is a discrete set of points. (Recall that 9 represents all points
in nd dimensions that correspond to degenerate sets P.) In this topological
setting, the phrase “E sufficiently small” gets a specific meaning: If co > 0 is the
smallest value of e such that x(E~) E 9, then E is sufficiently small if and only if
0 < E < to. It is less clear how condition (3) influences the choice of the ~(i, j).
Below, we formulate a criterion for the polynomials ~(i, j) that leads to an
efficient implementation of SOS. However, we do not claim that other choices of
the c(i, j) cannot lead to efficient implementations too.

Recall that a primitive operation is a function f that maps a set Q of k objects
to +l, 0, or -1. If the c-expansion is defined properly, then f(Q(&)) E (+l, -1)
provided E > 0 is small enough. In general, f(Q(c)) will be the sign of a fairly
complicated function in E. (Since f is now a binary function, we can identify
(+l, -1) with {true, false} and express it as a predicate. We will follow this
practice in the following sections of this paper.) One way to allow for an efficient
evaluation off (Q(e)) is to choose the E (i, j) in different orders of magnitude such
that two expressions, each consisting of several factors of the form e(i, j), can be
compared solely on the basis of the index pairs (i, j) involved. When we evaluate
f (Q(E)), we can sort its terms in order of decreasing significance, which can be
done by comparing sets of index pairs. The most significant term will be a term
without any e-factor; it will be equal to f(Q). The first term with a nonzero
coefficient decides the sign of the function. If Q is nondegenerate to begin with,
then f (Q(c)) = f(Q), and no other term has to be determined. In Sections 3 and
4, we will see that such a choice of the ~(i, j) allows us to determine the sign of a
fairly complicated polynomial in only a few steps.

Note that SOS requires us to tell when Q is degenerate, which means that we
need to be able to decide whether or not f(Q) = 0. This is not possible with the
kind of floating-point arithmetic that is usually provided by current computers.
Instead, we need to use exact arithmetic and, thus, occasionally long integers.
These admittedly somewhat expensive operations occur only inside the primitives
and do not concern the user of SOS. Furthermore, the length of such long integers
is bounded by a constant if kd, the number of input parameters off, is bounded
by a constant. In most geometric algorithms, this constant is reasonably small.
In Section 6 we report on our experience in implementing SOS and give an
indication to what extent the use of long integer arithmetic slows down the
computation. This point cannot be taken lightly because the long integer arith-
metic is likely to occur in the innermost loop of any program that uses SOS and
thus dictates the constant in front of the asymptotic running time. However, it
is worthwhile to mention that the need for exact arithmetic is not a peculiar
feature of SOS itself, but is necessary whenever we do exact computation rather
than push our luck and hope for the cancellation of round-off errors.

3. FINITE POINT SETS: A CASE STUDY
For a further discussion of SOS, it is advantageous to apply it to certain geometric
objects and certain primitive operations defined for these objects. We choose
points in the d-dimensional Euclidean space Ed as the objects for the case study.
Notice that this is actually no loss of generality since every object specified by

ACM Transactions on Graphics, Vol. 9, No. 1, January 1990.

72 l Simulation of Simplicity

d parameters can be interpreted as a point in E d. The primitive operation that
we will consider takes d + 1 points as input and decides on which side of the
hyperplane spanned by the last d points the first point lies. As we will see in
Section 5, this primitive operation has a wide range of applications.

If a given finite point set is perturbed, as explained in Section 2, one can ignore
all degeneracies and special cases. The price for this simulated simplicity is that
the coordinates of the points are now symbolic expressions in . Even for a simple
task, such as the comparison of two coordinates, we need a custom-made
procedure that handles the E-expansions of the coordinates. Let xi,j be the jth
coordinate of point pi, and let rk,l be the lth coordinate of pk, 0 I i, k 5 n - 1,
and 1 5 j, 1 5 d. To decide which one of the two corresponding perturbed
coordinates is smaller, we define a predicate Smaller as follows:

smdkr(~r;,j; rk,l) = true iff Ti,j(E) < rk,l(&).

Due to SOS, we can neglect degeneracies; that is, we have ri,j(c) # r&l(&), and for
this reason the predicate Sm&!er(ri,j; r&l) = fake if and only if p<,j(&) > T~J(E).
The implementation of this predicate is fairly straightforward since we can
compare the e-terms, e(i, j) and E(k, l), by comparing the defining index pairs
(see Section 3.2, Lemma 3.2).

Predicate 1 (Smaller). Assume the e-expansion c(i, j) is defined as in
Section 3.2 (2). With this, for indices 0 I i, k 5 n - 1, and 1 I j, 1 I d, which
satisfy (i, j) # (k, l), th.e predicate Smaller (.rr;,j; x~,~) can be implemented as
follows:

function Smaller(zri,j; 7rk,J returns Boolean
begin

if 7ri.j # rk,l then
return (.lri,j -C Kk.1)

else if i # k then
return (i > k)

else
return (j < 1)

end

Notice that, in this case, the coordinates ri,j and ?rk,l as well as their index pairs
(i, j) and (k, 1) have to be passed as arguments whenever predicate Smaller is
called. This means that in popular programming languages, such as Pascal, the
function heading would be something like

FUNCTION smaller (i, j, k, 1, Pij, Pkl): Boolean;

but implementation details like this will be ignored in the remainder of this
paper. Furthermore, notice that we have

hh&?r(ri,j; rk,[) = true
i f f

In Section 3.1 we express more complicated predicates than just comparisons of
coordinates by similar determinants. For matrices not exceeding a given size, it
is not difficult to speci;fy the e-expansion c(i, j) such that all requirements
discussed in Section 2 are satisfied. This will be done in Section 3.2. Finally,
ACM Transactions on Graphics, Vcl. 9, No. 1, January 1990

H. Edelsbrunner and E. P. Miicke . 73

Section 3.3 extends the results to homogeneous coordinates. The procedures that
implement the predicates will be developed in Section 4.

3.1 Predicates Expressed by Determinants
This section introduces the notion of orientation of a sequence of d + 1 points
in Ed. With this concept we will be able to give an implementation of the
primitive operation for d + 1 points mentioned above.

The orientation of a sequence of points (pi,,, pi,, . . . , pi,) in Ed is either negative
or positive-unless the d + 1 points lie in a common hyperplane, in which case
the orientation is undefined. The exceptional case is a degeneracy that can be
ignored if the points are perturbed. We define the orientation of a sequence
recursively. It will be important that the orientation of a sequence depends only
on the relative position of the points to each other and not on their absolute
positions.

If the dimension d = 1, then the orientation of (pi,, pi,) is positive if pi, > pi,,
and it is negative if pi, < pi, (cf. Figure 2a and b). If d = 2, then (piO, pi,, pi,) has
positive orientation if the three points define a left turn in the plane; that is, pi,
lies to the left of the directed line that passes through pi, and pi, in this order. If
(p,, pi,, pi,) defines a right turn, then its orientation is negative. Note that the
orientation of (pi03 pi,, pi,) is the same as the orientation of (piI, pi,) as “seen
from” pi,. Indeed, the line through pi, and pi, can be identified with E1 as soon as
we choose a direction of the line. This direction is provided by the location of
p;o: It goes from left to right as seen from pi,, (see Figure 2c and d).

If d > 2, then the orientation of (pi,, pi,, . . . , pi,) is the same as the orientation
of (Pi,, . . . , pi,) as seen from pi,. For example, (pi,, pi,, pi,, pi,) in E3 has positive
orientation if pi, observes (pi,, pi*, pi,) making a left turn. In most situations
where the concept of orientation is used, the interest is in the position of one
point, pi,,, relative to d other points, pi,, pi,, . . . , pid. We thus say that pi, lies on
the positive side of (pi,, . . . , pi,) if (pi,, pi,, . . . , pi,> has positive orientation, and
pi, lies on the negative side of (pi17 . . . , pi,) if (pi,, pi,, . . . , pi,) has negative
orientation.

To decide on the orientation of a sequence of d + 1 points in Ed, we use the
matrix

LEMMA 3.1 The orientation of (pi,,, pi,, . . . , p,j is positive if and only if
sign(det A) = +l and is negative if and only if sign(det A) = -1.

Notice that det A vanishes if and only if the d + 1 points are degenerate, that
is, if they lie in a common hyperplane-a case that can be neglected within the
perturbed point set P(E). Recall from linear algebra that the determinant of a
matrix is multiplied by -1 if we exchange two rows. Thus, the orientation of a
permutation of (p,, pi,, . . . , pi,) is the same as the orientation of the sequence

ACM Transactions on Graphics, Vol. 9, No. 1, January 1990.

74 ’ Simulation of Simplicity

Pi,
Pi, Pi,

Pi, >
Pi, Pi, Pi0 Pi, 44 7-- Pi, Pi0

(a) (b) (cl (d)
Fig. 2. The orientation of d I- 1 points in dimension d, for d = 1, 2. (a) Positive; (b) negative;
(c) positive; (d) negative.

itself if the number of t:ranspositions is even; otherwise, its orientation is the
opposite of the orientation of (pi,, pi,, . . . , pi,).

There are plenty of algorithms for point set problems that are based on
computing the orientation of a sequence of points. Prime examples are the
construction of convex hulls (see [9], [X3], [19], [20], or [22]), computing X-
matrices as discussed in [9] and [14], and finding convex subsets (see [5], [9],
and [lo]). The remainder of this section considers the primitive operations
required by the three-dimensional convex hull algorithm of Preparata and Hong
that is described in [9], [:@I, and [19].

The first step of the algorithm sorts the points in xl-direction. To perform this
step, it needs to compare the x,-coordinates of two points, which can be done by
computing the orientation of their orthogonal projections onto the xl-axis.
Second, it constructs the two-dimensional convex hull of the points projected
onto the x1x3-plane. Here, the primitive operation is to decide whether three
points (in the x1x3-plane) define a left turn or a right turn. Third, the algo-
rithm constructs the three-dimensional convex hull by repeating the following
operation:

Given a plane pivoting about two extreme points pi, and pi,, find the point
hit first by this plane.

This operation can be red.uced to a number of comparisons of the following form:
Given two points pi, and pi,,, which one is hit earlier by the pivoting plane? To
perform such a comparison is equivalent to deciding on which side of the plane
throughpi,, pi23 andpi, pointp, lies. This is the same as computing the orientation
of (PC, piI, pi,, pi,). Thus, we see that the convex hull algorithm of Preparata and
Hong requires three primitive operations, all of which determine the orientation
of point sequences.

3.2 Choosing the Form 01 the Perturbation
As explained in Section Xl, the primitive operation that determines the orien-
tation of a sequence of d + 1 points in d dimensions computes the sign of a
determinant of a (d + 1)-by-(d + 1) matrix. SOS replaces the coordinates ri,j in
this matrix by entries of the form ri,j + c(i, j). The determinant itself is then the
ACM Transactions on Graphics, Vol. 9, No. 1, January 1990.

H. Edelsbrunner and E. P. Mticke - 75

sum of a finite number of terms, where each term is the product of d items and
an item is either an original coordinate or an ~(i, j). Thus, each term consists
of a coefficient, which is the product of original coordinates, and a so-called
e-product, a product of factors of the form ~(i, j). The number of factors ~(i, j)
can be zero, in which case the e-product is defined to be equal to 1. As mentioned
in Section 2, it is irrelevant what exactly the definition of the c-expansion is as
long as it satisfies certain requirements. The computational simulation is unef-
fected if we change the definition of the c-expansion within allowed limits. Even
so, it is important to show that there is at least one c-expansion that satisfies the
requirements. The existence of such an expansion implies the physical existence
of an appropriately perturbed point set, which is the only guarantee of the
consistency of our method we have.

We define

.0(i, j) = ~2”6-j, \2)

forO(iIn- 1, 1 5 j 5 d, and 6 L d, and show that this choice satisfies all the
requirements of SOS. Notice that the amount of perturbation experienced by
coordinate ri,j is larger than the perturbation of ah.1 if and only if (i, j) < (k, 1);
that is, i < k or i = k and j > 1. Furthermore, we have

n e(i, j) = JJ c2”‘-j > E2”.‘-’ = c(k, 1) (3) (i,j)~(k,l) (i,j)<(k,l)

if 0 < E < 1. This is equivalent to stating that 2k’6-1, the exponent of &(k, l), is
larger than the sum of the exponents of all e(i, j) with (i, j) -C (k, I). It follows
that it is sufficient to consider the sets of index pairs when we compare two
c-products. Let el and e2 be two different c-products, and let s(ei) and Y(e,) be
the two associated sets of index pairs. We call 4(el) smaller than .Y(e,) if the
set Z(e,) - Y(e,) is empty or if (i, j) 4 (k, Z), for (i, j), the largest index pair in
.Y(e,) - Y(e,), and (k, Z), the largest index pair in Y(e,) - Y(e,).

LEMMA 3.2 Let cl and c2 be two positive constants, and let el and e2 be two
different e-products. Then cl . el > c2 . e2 for a small enough c if 4(el) is smaller
than Y(e,).

Lemma 3.2 is an immediate consequence of (3) and the fact that a small enough
e can compensate the influence of the constants cl and c2. Notice that it is
actually irrelevant which index pairs Z(el) and .Y(e,) contain. The only thing
of importance is the relative position of 4(el) and 4(e2) in the ordering of all
sets of index pairs, where large index pairs are more significant in the comparison
of sets than small index pairs. Observe also that Lemma 3.2 holds if we increase
the value of 6 in the definition of the c-expansion. It turns out that this lemma
is the crucial property that allows us to prove that P(E), the perturbed point set,
is simple and that the orientation of d + 1 points in P(c) can be computed
efficiently.

LEMMA 3.3 The set P(E) is nondegenerate if E > 0 is sufficiently small.
ACM Transactions on Graphics, Vol. 9, No. 1, January 1990.

76 - Simulation of Simplicity

PROOF. To prove the a,ssertion, we show that, for no choice of d + 1 mutually
distinct indices iO, il, . . . , id, the determinant of the matrix

Tio& + p+* ri,,2 + g’- . . . Tio,d + p+-d 1
Ti,,l + (!2” 6-1 ri,,* + p+* . . . H;,,d + p 6-d 1

A(&) =

1 *

.

: :I

(4)

7Fid,l +* p+ Tid,2 +* p6+ . . . Tid,d +* p+d ;

is equal to zero. To see this, we assume w.1.o.g. that 0 5 i. < i, < . . . < id 5
n - 1 and sort the terms of det A(E) in order of increasing exponents of E.
Specifically, det A is the first term, and

(.-l)rd/2’ . .$ 2’,.d-d+2i2.6-,d--1,+, ,+*,&a-,
9

the last one. Each term is of the form b . cc, for some constants b and c. Because
we can assume that e > 0 is arbitrarily small, the absolute value of the first term
with nonzero coefficient b is bigger than the sum of all other terms. Furthermore,
such a term always exists since (3) guarantees that no two terms of the deter-
minant have the same exponent of E, and thus, such a term cannot cancel. For
example, the coefficient of the last term is (-1) rd/2’ # 0 and cannot be canceled
by any other term. Consequently, det A(E) does not vanish. 0

As pointed out in the proof of Lemma 3.3, the most significant term of the
polynomial det A(E) is the determinant det A of the original coordinates. If the
orientation of the original sequence (pie, pi,, . . ’ . , pi,) is defined, then this term is
nonzero, which implies that the orientation of the perturbed sequence is the
same. This is reassuring since it shows that the perturbation does not change
nondegenerate relations of the original point set.

The curious reader might wonder why the perturbation is defined in the
peculiar form given by the &-expansion (2). As mentioned before, there are many
other choices that could be used, for example,

E(i, j) = E2i.a+j

is such a possibility. This &-expansion would also work, but its implementation
is slightly more difficult than that of (2) (cf. Section 4.2). On the other hand,
many less “exotic” choices do not work. The remainder of this section illustrates
this by considering two choices of e(i, j) that appear simpler than (2). The two
choices are

E(i, j) = ,i.a+i and c(i, j) = (i . 6 + j) . E.
In both cases, Lemma 3.3 does not hold. The reason for the failure is that both
expansions do not satisfy (3) and thus possibly lead to cancellations of E-terms
in det A(E). Such cancellations occur, for example, if all d + 1 points of the
sequence coincide with the origin. In this case, the matrix A(e) equals

c(io, 1) E(&, 2) ... &(i,,, d)
c(il, 1) c(il, 2) . .. e(il, d)

&(i& 1) C(id, 2) *** &(id, d)
ACM Transactions on Graphics, Vol. ‘3, No. 1, January 1990

H. Edelsbrunner and E. P. Mijcke - 77

If we define ~(i, j) = ~~.~+j, then the second column is equal to E times the first
column, which implies that det A(c) = 0 if d 1 2. If &(i,j) = (i . 6 +j) . E, then
the sum of the first and the third columns equals twice the second column; hence,
det A(E) = 0 if d 1 3.

3.3 Homogeneous Coordinates
When we develop the primitive procedures for computing the orientation of
d + 1 points in Section 4, we represent a point by its homogeneous coordinates.
This representation is slightly more general than ordinary Cartesian coordinates
(it can also represent points at infinity) and leads to a slightly more uniform
procedural treatment.

Let p be a point in Ed, and let (?rF, ?rg, . . . , 7r,“) be its sequence of Cartesian
coordinates. Point p has d + 1 homogeneous coordinates

CT
‘4
1, d, . . * ,

H H
rd; rd+l)

such that

Thus, p is l/r:+:, times the point whose Cartesian coordinates are equal to the
first d homogeneous coordinates of p. Notice that the homogeneous coordinates
of p are not unique; we still represent the same point p if we multiply each
coordinate by the same nonzero scalar. If we decrease the absolute value of *f+,
without changing the other homogeneous coordinates, then p moves away from
the origin on a straight line and reaches “infinity” when of;‘+, becomes 0. Indeed,
p is “at infinity” if and only if ir:+i = 0. Using homogeneous coordinates, it is
not allowed to have all d + 1 coordinates equal to O-in this event, p is not
defined.

We next extend Lemma 3.1 to homogeneous coordinates; that is, we charac-
terize the orientation of a sequence of d + 1 points (pi,,, pi,, . . . , pi,),

* 9 ri.,d; fi,.d+l 7 H H)

in terms of their homogeneous coordinates. The orientation of a sequence of
d + 1 points is not defined if any of the points lies at infinity. In fact, it is not
possible to generalize the notion of orientation to points at infinity without
changing our interpretation of a point at infinity. For example, consider a
sequence S of d finite points and one point p = (7rr, =F, . . . , ry; 0) at infinity.
We can think of p as the limit of points

when E > 0 goes to zero, but as well, we can think of p as the limit of these points
if E is negative and approaches zero. If we replace p by p(e) with E small enough,
then E > 0 and e < 0 lead to different orientations. We thus restrict our discussion

ACM Transactions on Graphics, Vol. 9, No. 1, January 1990.

78 l Simulation of Simplicity

of orientation to finite points. Define

A=

If (f,d+l = 1, for 0 5 v 5

(5)

d, then A is the same as the matrix A used in __
Lemma 3.1. Otherwise, we can multiply the rows such that ~f,~+i = 1. The sign
of det A changes if we multiply a row with a negative number, which implies the
following result:

LEMMA 3.4 Let (pi,,, pi,, . . . , pi) be a sequence of points with pi, =
(7fl, 37’:,2, . . . , red, Tfd+l) and Ti4d+1

sign(det A) = II?='=, sign(iH
0. Their orientation is positive if

and undefined if det A = 0.
l,,d+l)9 TZegiiiVe if sign(det A) = -nf+ sign(xF,,+,),

In contrast to Cartesian coordinates, a point is now represented by d + 1
coordinates, which makes it necessary to choose 6 2 d + 1 when defining the
c-expansion &(i, j) in (2). With this, it is easy to prove that determinants cannot
vanish, which implies that Lemma 3.3 holds also for the new setting using
homogeneous coordinates.

4. IMPLEMENTING A PREiDlCATE

This section presents the actual implementation of a geometric predicate using
SOS. The chosen predicate determines the orientation of a sequence of points, as
defined in Section 3. Its implementation will be based on the e-expansion specified
in Section 3.2 (2) and on the fact that the orientation can be found by evaluating
the sign of a determinant as stated in Sections 3.1 and 3.3. The crux of the
implementation is that this determinant is a polynomial in c. The computation
of the sign of such a polynomial is discussed in Section 4.1. The coefficients of
the polynomial turn out to be subdeterminants of the original matrix. Based on
this observation, Section 4.2 gives an algorithm that generates these subdeter-
minants in sequence of dec:reasing significance by employing a special encoding
scheme. Finally, in Section 4.3 we briefly address the problem of sign computation
of integer determinants in general.

In Sections 3.1 and 3.3, we defined the “orientation” of a sequence of points in
d-dimensional Euclidean space given by Cartesian and homogeneous coordinates.
We now formally develop the corresponding predicate that uses perturbation in
the sense of SOS. In the Cartesian case, each point py is given by its d coordinates

whereas in the case of homogeneous coordinates a point is represented by a
(d + l)-tuple

PY = (rv.1, . . . , rv,d; rv,d+l).

ACM Transactions on Graphics, Vol. 9, No. 1, January 1990.

H. Edelsbrunner and E. P. Mijcke l 79

Let

p = {PO, . * *, Pn-11

be a set of n points in Ed, and denote by

P(E) = (P&L * * *, Pn-l(C)1
its perturbed version using the c-expansion of Section 3.2 (Z), assuming 6 is large
enough so that Lemma 3.2 is valid. Now define for d + 1 points with distinct
indices iO, i,, . . . , id, all in the range from 0 through n - 1,

Positived(Pk, . . . , Pi,) = true

iff
the orientation of (pi,(E), . . . , pid(&)) is positive.

Degenerate cases can be neglected because we simulate simplicity. From
Lemma 3.1 it follows that Positived is equivalent to the test of whether or not

sign(det A(E)) = +l,
with A(E) denoting the corresponding matrix of the perturbed Cartesian coordi-
nates as in (4). In the homogeneous case (see Lemma 3.4), we have to check
whether or not

d

sign(det A(E)) = n sign(ai”,d+l(&)).
v=o

Here, A(e) denotes the perturbed version of matrix A in (5), whose rows are
formed by the homogeneous coordinates of the points involved; that is,

Tic,1 + E(~o, 1) P;,,z + e(iO, 2)

I *

*. . ri,,,d+l + c(iO, d + 1)
Ki,,l + e(il, 1) Ki,,2 + e(il, 2) * *. Hil,d+l + c(il, d + 1)

A(E) = :

rid,1 + E(id, 1) rid,2 + C(id, 2) * a * i I. ni,,,d+l + &lid, d + 1)

At first sight, the development of such an e-determinant seems to be a painful
exercise. Yet, it will turn out that it is not that hard and can be achieved in an
algorithmically clean way. Anyway, to begin with something easy, consider

det A,(E) = det Pi,1 + c(i, 1) Ti,2 + c(i, 2)
rj,l + C(j, 1) rj,2 + 4, 2) ’

Let e((il,jl), . . . , (ik, jk)) = nfzl e(i,,j,), and call it a k-fold c-product; E() = 1 is
called the O-fold e-product. Furthermore, assume i <j. When we now develop the
determinant, we get

-Tj,l * E(i, 2) + ?Tj,z * e(i, 1) + (6)
+ri,1 * 4.i 2) + 1 * E((j, 21, 6, 1)) -

-7q2 . e(j, 1) - 1 . e((j, I), (6 2)),

ACM Transactions on Graphics, Vol. 9, No. 1, January 1990.

80 - Simulation of Simplicity

where the terms are already sorted by increasing powers of e. Note again that the
first coefficient correspond,s to the “unperturbed” determinant, that is, A,, whose
evaluation would be part of any implementation of the predicate-of course,
followed by the more or Iless awkward handling of all possible degeneracies.
Observe also that the coefficient of the fifth term is a constant, namely, +l.
Thus, the last two terms have no influence on the sign of det A,(e). Therefore,
the number of relevant terms of the &-polynomial det A,(c) is only 5, rather than
7, which is the total number of terms.

It is convenient to assume i0 < . . . < id (cf. (6)). This assumption, together
with Lemma 3.2, implies that the sign of det A(E) and det A(E) can be computed
without any further knowledge of the values of the indices. Clearly, this is not
the case in general, but can always be achieved by appropriate row exchanges in
A(E) or A(e)-recall that each exchange changes the sign of the determinant.
For this, assume there is a procedure SO&+~ ((i,,, . . . , id), (i;, . . . , ii), s’) that
returns for a given sequence of d + 1 indices (iO, . . . , id) the sorted sequence
(ii, . . . , i:). Additionally, Sortd+l returns s’, which is set to the number of
exchanges used. We can now implement predicate Positived using two operations,
SignDet A and SignDet A, that compute the sign of the c-polynomials
det A(E) and det A(c), assuming iO < - - - < id. Both functions will be discussed
in Section 4.1.

Predicate 2 (Positive). Let pk, . . . , pid be d + 1 points in Ed given in Cartesian
or homogeneous coordinates with distinct indexes all between 0 and n - 1. Then
the following pseudocode is an implementation of the predicate Positive&

function P&t~ved (pi,, 7 . . . 3 pi,) returns Boolean
local ib,. . .,ih, d’, s’, v
begin

SOT~d+l((h . . . , id), (ii) . . .) ig, s’)

if Cartesian coordinates then

(

Iih,l(E) .. . ~i~,d(&) 1

d’ c signDet&+l i . i i -.

VJ Cc) . . . ~ik,d(‘) 1 I
else

(

“;;,1(&) - * - Xik,d(E) Aih,d+l(E)

d’ t SignDet&+l i *.

*i>,l(&) i 1 ’ * ’ Rik,d(E) TiL,d+l(E)

if odd(s’) then d’ t - d’
if Cartesian coordinates then

return (d’ = +I)
else

return (d’ = II?=, skn(niy,d+l(c)))
end

The problem is now to give efficient implementations for the two functions
SignDet Ad+1 and SignDet Ad+l. We feel that it is important to stress that
“efficiency” is meant in a practical sense-in theory it can be done in constant
time anyway, assuming d is a constant.
ACM Transactions on Graphics, Vol. 9, No. 1, January 1990.

H. Edelsbrunner and E. P. Miicke - 81

4.1 The Sign of a Perturbed Determinant
We now illustrate the implementation of SOS on the bottommost programming
level by implementing the function SignDet A,, which returns the sign of
a D-by-D c-determinant det A,(E) for any given D; primitive SignDet ho can be
treated in the same way. To appreciate the significance of a (practically) efficient
implementation of SignDet AD, we point out that this is in fact the major part of
SOS, at least when applied to the predicate described above. Provided that
iO< . . . < io, we will show that it is possible without great effort to generate the
sequence of the coefficients of det A,(E) in decreasing order of significance. Since
e can be assumed- to be sufficiently small (but positive), the sign of the
e-polynomial is therefore equivalent to the sign of the first nonvanishing
coefficient.

Using simple rules for evaluating a determinant as exemplified for det A, (E) in
(6), the coefficient of every term in det A,(E) is a subdeterminant of the
“unperturbed” matrix A,. Here, a single entry is called a l-by-l subdeterminant,
and by definition, the O-by-O subdeterminant is equal to 1. To tell the whole
truth, we must mention that each coefficient in effect is a subdeterminant
together with a certain sign, that is, multiplied by either +l or -1. We will see
in Section 4.2 how to decide whether +l or -1 applies. To continue our discussion,
we need a few notations. We say that the (t + 1)st coefficient in order of
decreasing significance, denoted by det MF, is the cofactor of depth t of
matrix A,(E). Note that this coefficient already includes its proper sign. Thus,
det M$’ = +det A,. The size of the corresponding matrix (i.e., the number
of rows or columns) is denoted by k, = k(MF). These definitions are illustrated
in Table I, which shows all significant terms of det A,(E). In the column with the
heading et, we display the &-product associated with the cofactor of depth t.
Column ut will be explained later.

This leads to the pseudocode implementation of SignDet A, shown below. It
assumes that iO < . . . < i. and that the sequence of subdeterminants, sorted by
increasing depth, is known. The code also requires a function SignDet&) that
calculates the sign of det @ for a k-by-k matrix a. The authors have not been
able to find an alternative way to determine the sign other than by computing
the actual determinant. Unfortunately, computing the (exact) determinant of a
matrix of integers demands the use of long integer arithmetic. More about that
in Section 4.3.

function SignDetAD (AD) returns +l or -1
local 0, Ict, t
begin

tc -1
repeat

tct+1
kt t k(MtAD)
u +- SignDetk,(MtAD)

until u # 0
return f.7

end
ACM Transactions on Graphics, Vol. 9, No. 1, January 1990.

82 - Simulation of Simplicity

Table I. The 5 Relevant Terms of det AZ(E)

t kt . k, ut det M> et

0 2'2 13, 3; 31
+det *i,1 ri,z

() ri. 1 Tj'j, 2 4)

1 1.1 P, 3; 31 -det(r,,,) = mrj.1) c(i, 2)
2 1.1 [I, 3; 31 +det(rj,z) = +~,.z c(i, 1)
3 1.1 P, 2; 31 +det(ril) = +ql di, 2)
4 0.0 L 2; 31 +det() = +l c((i, 21, (i, 1))

Function SignDet AD “scans” through the table of relevant subdeterminants.
Two lines of the pseudocode, “kt t k(M,a”)” and “a t SignDetk,(MF),” indicate
table lookups. In Pascal this could be implemented as a CASE-statement. For
D = 2, it would consist of five different cases as shown below:

CASE t OF
0: s := SignDet2 (Pil,Pi2,Pjl,Pj2);
1: s := -Sign (Pj I> ;
2: s := Sign (Pj 2) ;
3: s := Sign (P/ii) ;
4: s := 1;

END ;

If the depth counter is of no interest, one can even unwind the loop and come up
with the following code:

FUNCTION SignDetDaltaP (Pil, Pi2, Pjl, PjZ): Integer;
BEGIN

SignDetDeltaB := SignDet2 (Pil, Pi2, Pjl, Pj2);
IF-SignDetDelta2 < 5> 0 THEN goto 999;
SignDetDeltaB := -Sign (Pjl);
IF SignDetDeltaB < >a 0 THEN goto 999;

iignDetDeIta2 := 1;
999: (* exit *)

END;

To give more insight into the computation of the terms of det A,(E) in the
order of decreasing significance, we now consider the three-dimensional case,
that is,

(

’ 7ri,l + c(i, 1) 7q2 + c(i, 2) ri,3 + 4 3)
det A,(E) = det r;,l + ~(j, 1) 7r;,2 + ~(j, 2) rj,3 + ~(j, 3) .

srk,l + EN, 1) rk,2 + c(k, 2) Tk,3 + &(k, 3))
This polynomial has a total of 34 terms. However, only 15 of them are relevant,
and those are listed in Table II. There are two reasons why we only need
to test 15 coefficients out of a total of 34. One is that the coefficient of
c((k, 3), (j, 2), (i, 1)) is equal to +l, which is nonzero; we can therefore stop there
and consider no further terms. The other reason is that certain coefficients occur
ACM Transactions on Graphics, Vol. 9, No. 1, January 1990.

H. Edelsbrunner and E. P. Mijcke l 83

Table II. The 15 Relevant Terms of det A,(e)

t kc . kt Vt det Mp El

0 3

12

2 2

3 2

4 2

5 1

6 1

7 2

8 1

9 2

'3

2

2

2

1494, 4; 41

13, 4,4;41

[2,4, 4; 41

[3, 3, 3; 41

[2,3, 3; 41

L 3, 3; 41

[2, 2, 3; 41

11, 2, 3; 41

+det(w) = +T~,~

-det(m,d = -Tk,z

+det(1Tk.3) = +ak,3

-det(lr,,,) = -T~,~ 4k 31, k 2))

+det(rj.,) = +r,.,.z 4th 3), (6 1))

+det(q,) = +q, d(k, 3), (i2))

+det() = +l 4(k, 31, (i, 2), (i, 1))

4)

c(i, 3)

4i, 2)

46 1)

dh3)

4(j, 3), (i, 2))

e((j, 31, (i, 1))

4i, 2)

4t.i 3, (i, 1))

4, 1)

dk3)

more than once, that is, with different c-products. For example,

det A,(E) = .a. + 7r~k,~ . E((j, 2), (i, 1)) ... -r@ . &((j, l), (i, 2)) . . . (7)

Clearly, there is no need to test -7r k,3 # 0, since at this depth +K~,~ = 0 is already
known; otherwise, the sign determination would have stopped immediately after
testing the coefficient of &((j, 2), (i, 1)).

4.2 Generating the Sequence of Significant Coefficients
The properly sorted sequences of c-terms of the polynomials det A,(c) and det
A,(E) are apparently very regular. In the following, this regularity will be worked
out and exploited by an algorithm that automatically generates the correct
sequence of c-terms. This procedure can be embedded in an implementation of
the function SignDet AD that computes the sign of det A,(E). We agree that a
procedure that generates each term of det A,(E) by collecting the proper rows
and columns of the original matrix is, in a practical sense, much slower than a

ACM Transactions on Graphics, Vol. 9, No. 1, January 1990.

84 - Simulation of Simplicity

straight-line program that. scans through a fixed sequence of submatrices. How-
ever, in higher dimensions the former might be the better strategy, since the
likelihood of det MAD = 0 for all 7 with 0 5 7 5 t decreases very fast as t increases,
not to mention the’ fact that the tables of relevant terms for det A,(C) become
rather long for large D. The algorithm to be described can also be used for
automatic generation of such tables and even for the automatic generation of
codes implementing them.

We now discuss in detail how we can extract the individual terms of the
polynomial det A,(E). Recall that a term is of the form b . cc, where b is called
the coefficient and eC is the e-product of the term. If eC = E ((i1, jl), . . . , (ik, j,))
(so it is a k-fold E-product), then we call ~(i,, j,) actiue, for 1 % 1 5 12. Given the
E-product of a term, we can extract the coefficient b from the given matrix by
crossing out all rows and columns that contain an active E (i,, j,). In order to avoid
extensive double indexing and index inversions, we assume that the points whose
coordinates are the entries in the D rows of the matrix A, have indexes 1 through
D. This allows us to ignore the difference between a point index and the
corresponding row index. Indeed, this assumption is no loss of generality since
the only property used in computing the sign of det AD(C) is that the point
indexes are sorted and, therefore, the actual values are irrelevant. With this
assumption, ~(i,, j,) is in the i,th row and the j,th column, and we cross out rows . .
11, 12, -.a, ik and columns j,, j2, . . . , j,. This leaves a (D - Iz)-by-(D - k)
submatrix. Table II illustrates these definitions for D = 3. If b . eC is the term of
depth t, then the notation in Table II is such that b = det Mp, E’ = et, and k, is
the number of rows (or columns) of Mp.

Note that we did not yet specify how we can decide whether b is -1 or +l
times the determinant of the submatrix. We now describe a rule that is based
on the number of transpositions needed to sort a certain permutation. For
row L, 1 5 L 5 D, let j, be the column such that E(L, j,) is active in the term that
we currently consider. By definition of a determinant, there can be at most one
such column, but it could very well be that there is no such column. In this case
we choose j, such that rL,j, belongs to the main diagonal of the submatrix that
was obtained after crossing out rows and columns as described above. If the
number of exchanges needed to sort (j,, j2, . . . , j,) is odd, then b = det Mf” is
-1 times the determinant of the submatrix; otherwise, it is +l times this
determinant.

Interestingly, the number of exchanges needed to sort the sequence
(A, h, . . . , j,) is even if and only if i, + ji, is odd for an even number of pairs
(i,, ji,), 1 I L s k. To see this, notice that the total number of pairs (K, j,)
with K + j, odd is even sin.ce

HE1 (K + j,> = 2 ,i K.
n=l

Now observe that (j,, j2, . . , j,) can be sorted using only exchanges of adjacent
columns, that is, of integers j, that differ by one. Note also that we can dispense
with all exchanges between two columns where both contain an active e(i, j) or
both do not. Thus, every exchange of two columns increases or decreases the
number of pairs (i‘, ji,) with i, + j, odd by one, which implies the claim. This
property will be used in the algorithm that computes the proper sign.
ACM Transactions on Graphics, Vol. 9, No. 1, January 1990.

H. Edelsbrunner and E. P. Mticke l 85

The key observation that allows us to automatically generate the relevant
terms of det A,(E) is that e((ii, ji), . . . , (ik, j,)) is the E-product of a relevant
termifandonlyifi,< a.. <&andj,< ..a <j,. In other words, the c(i,, j,) go
monotonically from the left top to the right bottom of the matrix. To see this,
take an c-product that does not satisfy this condition, and consider the E-product
defined by the same 2k indices that is obtained by matching the smallest i, with
the smallest j,, the two second smallest indexes, etc. This new E-product is more
significant than the old one since the exponent of E it defines is smaller than the
exponent of the old e-product. Furthermore, the coefficients that correspond to
the two c-products have the same absolute value, namely, the determinant of the
submatrix obtained by crossing out rows i, and columns j,, for 1 % L I k.

The algorithm that generates the &-products and their corresponding coeffi-
cients uses a vector

where each Ui is an integer between 1 and D + 1 and ui corresponds to the ith
row of det A,(E); u~+~ is set equal to D + 1 and is used only for convenience. The
interpretation of u is as follows: To encode the c-product c((&, jl), . . . , (ik, j,)),
we set vi, = j, for 1 I L 5 k. For every i such that the ith row does not contain an
active c(i, j), we define Ui = u;, with i, the smallest integer in (iI, . . . , ik, D + 1)
that is larger than i. Thus, u, in u implies that E(K, u,) is active if and only if
u, < u,+1. For example, u = [3, 4, 4; 41 implies that the c-product of the encoded
term is ~(1,3). Other examples can be found in Table II, which gives the vectors
of all relevant terms in det A,(c).

The next problem we face is how to generate the terms of det AD in the correct
order, that is, in the order of decreasing significance. Here we use the fact
that U = [Ul, ud; u~+~] encodes a more significant term than
ut = Eu:, . . . , u;; ULl,l] if and only if Uj > uf for j, the largest index, such that
Uj # u,!. This implies that u = [D + 1, . . . , D + 1; D + l] encodes the most
significant term and, indeed, it encodes E() = 1, whose coefficient is the deter-
minant of the entire original matrix. It is now easy to write a function that
computes for a given vector its successor.

function iVezt-v (17) returns Vector
local L, K.
begin

L+-1
while v, = 1 do L + L + 1
V‘ +-- V‘ - 1
forntL--ldowntoldov,tv,
return v

end

The alert reader will have noticed that this function returns an “illegal” vector
if the input vector is [l, . . . , 1; D + 11, which is not a problem, since the
determinant evaluation is such that [l, 2, . . . , D; D + l] already encodes a
nonzero coefficient, and thus there is no reason to call Next-u again.

ACM Transactions on Graphics, Vol. 9, No. 1, January 1990.

86 9 Simulation of Simplicity

After initializing u to [D -t 1, . . . , D + 1; D + 11, successive calls to Next-u
give the desired sequence of vectors. It remains to be shown how the coefficient
of the encoded term can be computed. The procedure below decodes u and returns
the submatrix M obtained after deleting the proper rows and columns from A,.
It also returns s equal to -1 or +l, depending on whether the coefficient equals
-det M or +det M, and returns k, which is equal to the number of rows (or
columns for that matter) of M.

procedure Muttiz (0, s, k, M)
global AD, D
local L
begin

M + AD
kcD
St +1
for L t 1 to d do

if w, < v,+l then
{in this case E(L, vL) is active}
if odd(L + v,) then s c -s
delete row L from M
delete column w, from M
X:+-k-l

end

We can now modify the code of SignDet AD by replacing the table lookup by
appropriate calls to Next-u <and Matrix. With additional modifications the same
algorithm can be used to generate the table of relevant terms in det A,(E) or
even to generate the corresponding code for SignDet AD for any D. Note that, in
the latter case, the loop in SignDet AD is to be repeated only until k, = 0, since
in “generating mode” the values of the determinants are not computed and thus
there is no natural abortion ‘of the cycle of calls. The result for D = 4 can be seen
in Table VI in the Appendix.

A nice feature of the above algorithms is that we only need to change the
initialization of u to [D, . . . , D; D] to get an implementation for SignDet AD that
computes the sign of the e-polynomial det A(c). For this case, the loop over all
relevant terms has to be repeated either until the corresponding cofactor is
nonzero or, if we are in “generating mode,” until k, = 1. See Tables III-V in the
Appendix for the relevant terms of det A,(E) for D = 2, 3, 4. It seems worthwhile
to mention that Cartesian coordinates should be used whenever possible. This
reduces the problem roughly by one “dimension,” as compared to the homoge-
neous case (cf., e.g., Tables II and IV).

The presented c-polynomials det A,(E) and det A,(e) illustrate that the
computational overhead caused by SOS is acceptably small. One has to keep in
mind that the most significant term of these c-determinants corresponds to the
original determinant that expresses the primitive. So, there is no way around the
evaluation of the sign of this determinant for any implementation. If the input
data are nondegenerated, th.e cost of SOS is obviously zero, and in general, it is
rather unlikely that the polynomials have to be evaluated down to large (depths.
ACM Transactions on Graphics, Vol. 9, No. 1, January 1990.

H. Edelsbrunner and E. P. Mijcke l 87

Indeed, the largest depth or the sum of all depths that occurs in a computation
can be used as a measure for the degree of degeneracy of the input data.

By evaluating the subdeterminants, we systematically take care of all possible
degenerate cases. Take, for example, the evaluation of det ha(&). Different cases
can be distinguished by looking at the largest depth &ax reached during the
computations. This t,,, can be 0, 1, 2,3, or 4, and the corresponding degeneracy
is as follows (compare with Table IV in the Appendix):

t max = 0: The three points pi, pj, and pk are in general position.
t max = 1: The three points are collinear, but pj # pk and the line containing the

three points is not vertical.
t max = 2: The three points lie on a common vertical line, but pj # pk.
t max = 3: Point pi coincides with pk, but not with pi, and the line through pi and

pj is not vertical.
t max = 4: All three points lie on a common vertical line, and pj = pk.

It would be interesting to see this somewhat unnatural case analysis in greater
detail since it gives a nonobvious breakdown into degenerate cases that has
curious properties.

This discussion completes the implementation of SOS with respect to the
predicate Positbed for point sets in Ed. We considered both the Cartesian and
the homogeneous case. The key was to find a method that generates the proper
sequence of relevant terms of det A,(E) and det AD(c) ordered by decreasing
significance. With this, the implementation of the functions SignDet A, and
SignDet A, was easy. We will see in Section 5 that both functions can also be
used to implement other predicates.

4.3 Remarks on the Sign Computation of Determinants
In the previous sections, we reduced all computations to a sequence of sign
evaluations of determinants. In the primitives discussed in this paper, the
matrices are at most of size (d + 2)-by-(d + 2), d the dimension of the space, and
all elements are assumed to be integers. Theoretically, the sign of such a
determinant can be determined in constant time if we assume that d is a con-
stant. This assumption is indeed fair since SOS is intended primarily for low-
dimensional geometric computations. In practice, however, it is important to
optimize the sign computation since it will be in the innermost loop of every
program that uses SOS-which does not mean that this issue is less important
for programs not employing SOS. We remark on a few methods that can be used
to get speed in these computations.

One important condition that we have to meet is that the sign of the determi-
nant has to be computed exactly-we cannot tolerate a +l for a 0, etc. Assuming
that the coordinates or parameters are integers, we can use either long integer
arithmetic or modular arithmetic based on the Chinese remainder theorem. For
details on both methods, refer to [16]. If we actually compute the determinant in
order to find its sign-and no method is known to the authors that avoids the
actual computation of the determinant-we have to be prepared to deal with
numbers of absolute size at least pD, where p denotes maximum absolute value
of any data item and D denotes the largest size of matrices we work with. To see

ACM Transactions on Graphics, Vol. 9, No. 1, January 1990.

88 - Simulation of Simplicity

this, just take the D-by-D matrix whose entries are all zero except for the ones
in the main diagonal, where they are equal to p; the determinant of this matrix
is pD. An upper bound on the absolute value of the determinants is given by a
well-known theorem of Hadamard that states that

Among other things, this upper bound on the absolute value of a determinant
gives us an upper bound on the number of computer words needed for the
computation if we use long integer arithmetic.

Without any hardware support, long integer arithmetic is very time consuming,
which might motivate us to resort to the use of approximation methods. Any
computation of the determinant using floating-point arithmetic of bounded
length is such an approximation. Floating-point arithmetic is usually rather fast
since it enjoys the needed hardware support on most of today’s computers. If the
value that we get is sufficiently far from zero, we can be sure that the correct
value is different from zero and lies on the same side of zero. But how can we
quantify “sufficiently far from zero”? In any case, we could now use Gaussian
elimination (see, e.g., [13]j that takes O(D3) time or asymptotically faster
methods based on matrix multiplication as described, for instance, in [l]. We do
not believe that the latter methods could be of any practical use, though. However,
if the value that we get is suspiciously close to zero, we have to use some other
method to determine the sign of the determinant.

Finally, we would like to mention that the determinant of a D-by-D matrix
can be expressed in terms of subdeterminants, and that some of these subdeter-
minants might later appear again when the evaluation of det AD(C) or det AD(E)
proceeds. It is conceivable that the values of such subdeterminants are saved and
used again when needed. Even so, we do not believe that such a method could
lead to significant savings since we expect that, on average, only very few terms
of the e-determinants are needed.

5. FURTHER APPLICATIONS OF SOS FOR DETERMINANTS
In this section we demonstrate that the algorithmic solution to many geometric
problems can be based on primitive operations that compute the sign of deter-
minants. Those include pro’blems that deal with objects different from points.
There are two major reasons why determinants are useful beyond problems for
points. One is that more complicated geometric objects are often given by a finite
set or sequence of points. Examples are line segments given by two points and
triangles specified by three points. This will be illustrated in Section 5.1, which
revisits the Parity Algorithm discussed in the Introduction. The other reason
(and this is the more profound although less obvious of the two) is that other
objects can be thought of as points in a different space. Take, for example, a
hyperplane in d dimensions. It can be specified by a linear relation of the form

%X1 + v2x2 + * . . + qdxd + qd+l = 0.

ACM Transactions on Graphics, Vol. 9, No. 1, January 1990.

H. Edelsbrunner and E. P. Mijcke * 89

Multiplying this relation with a nonzero constant does not change the hyperplane.
This suggests that we think of the hyperplane as the point with homogeneous
coordinates

in d dimensions. This view of hyperplanes will be discussed in more detail in
Sections 5.2 and 5.3. Of course, an n-gon specified by a sequence of n points in
the plane can be interpreted as a point too-in this case it is a point in 2n
dimensions. However, in contrast to the former case, this view is not likely to
lead to any useful application of determinants since it becomes increasingly
expensive to compute them as the size of the matrix increases. Finally,
Section 5.4 shows that even nonlinear geometric objects such as circles and
spheres can profitably be interpreted as points in low dimensions as well.

By no means do we believe that the list of applications for primitives concerning
the sign of determinants, as presented in this paper, is exhaustive. In fact,
because of the versatility of determinants, an enumeration of their applications
in geometric computation is far beyond the scope of this paper. We agree though
that such an enumeration is a challenging task.

5.1 Point-in-Polygon Test

Recall the Parity Algorithm for the point-in-polygon problem sketched in the
Introduction. In order to test whether a given point p lies inside a simple polygon
P, the algorithm intersects the horizontal half-line r, whose left endpoint is p,
with all edges of polygon P. If the number of edges intersecting r is odd, then p
lies inside P, and if this number is even, p lies outside. The subtlety of this
algorithm lies in the treatment of special cases since the above characterization
holds, in general, only if we introduce certain artificial counting mechanisms
whenever r contains a vertex or even an entire edge of P. In this section we show
that the test of whether or not an edge intersects the horizontal half-line r can
be reduced to computing the signs of certain determinants. SOS is then used to
simulate a perturbation of the point and the polygon that removes all degenera-
ties. The algorithm assumes that P is given by a sequence of vertices
(u1, uz, *. . , u,) and that all coordinates including those of p are integers.

We now consider the problem of testing whether r intersects an edge e of P
given by its two endpoints. Let u = (vi, u2) and w = (oi, 02) be the two endpoints,
and recall that p = (rl, 7r2) is the left endpoint of r. Because of SOS we can
assume that u, w, p are not collinear and that no two of the three points lie on a
common horizontal line. Note first that r and e intersect only if the second
coordinate of p lies between the second coordinates of u and w. Assume u2 < 02.
If indeed u2 < 7r2 < w2, then r II e # 0 if and only if (u, w, p) defines a left turn
(see Figure 3).

It is now not very difficult to develop this case analysis into a predicate that
tests for intersection. To perturb the points, we use the same &-expansion as
described in Section 3.2:

That is, we replace ui = (vi.19 vi,2) by Vi(E) = (Vi,i(E), Vi,z(e)), where
Yi,j(e) = vi,j + ~(i, j) with ~(i, j) as in (2). For a uniform treatment, we define

ACM Transactions on Graphics, Vol. 9, No. 1, January 1990.

90 * Simulation of Simplicity

/

W

U
.---------.---.------.---.-~
P

(4 (b) (cl

Fig. 3. The three cases to co:nsider for r n e using SOS. In (a), r and e do not intersect
since the second coordinate of p does not lie between those of u and w. In (c), they do
not intersect since (u, W, p) is a right-turn.

P = uo = bo,1, v~,~), and write the predicate for arbitrary three vertices rather
than for v. and two successive vertices of P.

Predicate 3 (IntersectHalfLine). Let vi, Vj, and vk be three vertices with pairwise
different indices 0 5 i, j, k 5 ,P. The following pseudocode returns true if the edge
from Z+(E) to V&(E) intersects the horizontal half-line whose left endpoint is given
by vi(c), and false otherwise:

function In2ersectHuZfI;ine (vi; vjuj, vk) returns Boolean
local i’, j’, k’, s’, d’
begin

W.l.O.g. assume SWUZZZeT(Vj,~; V/Q).
if SmaZZeT(vj,z; VQ) A SmaZZer(v+; vk,z) then

SO?q(i, j, k), (2, j’, k’), s’)

(

%‘,l(&) Q,2(&) 1
d’ + SignDetAs z'j',l(E) vjt,2(E) l

z’k’,l(E) vk’,2(&) 1

if odd(J) then d’ +- - d’
return (d’ = +I)

else
return false

end

A few remarks are in order. When the above function is applied to the point-
in-polygon problem, i = 0 a.lways holds. Thus, the sorting of (i, j, k) can be
reduced to a single comparison between j and k. Furthermore, to avoid all
degeneracies for the point-in-polygon test, it is sufficient to perturb only the
point p = vo. Indeed, if

lVi.l(&) Vi.Z(E) 1
1 =o,
1) \ vk,l vk,Z

then we necessarily have Vj,z = v@ # Vi,z(E) , and therefore, the determinant does
not even get evaluated. The savings one gets this way are only nominal, which
we interpret as an argument for the efficiency of our general method.

The remainder of this sect:ion is used to comment on what happens if the test
point p lies on the boundary of the polygon P. If we use the above primitive as
ACM Transactions on Graphics, Vol. 9, No. 1, January 1990.

H. Edelsbrunner and E. P. Mijcke - 91

is, SOS will neglect this special case and find that p lies on either side of P’s
boundary. The decision depends on the relative positions of p and the vertices of
P, and we might as well assume that it is arbitrary although consistent. Such a
decision may or may not be desirable. If it is not acceptable, one could test
whether or not p lies on the boundary of P before running the Parity Algorithm
with SOS. Once more this test can be reduced to computing signs of determinants.

5.2 Hyperplanes in Euclidean Space
Algorithms for hyperplanes play a central role in computational geometry. This
becomes obvious when one thinks of the importance of problems such as linear
programming, computing the intersection of half-spaces, and constructing
arrangements of hyperplanes (see [9] and [19] for further details and references).
The goal of this section is to demonstrate how the techniques of Section 4 can
be used to implement a typical primitive operation needed in those algorithms.
This will open up an entire class of problems to the use of SOS. The main tool
that lets us exploit the techniques of Section 4 when we handle hyperplanes is a
duality transformation that maps hyperplanes to points and vice versa. In
essence, this transform is nothing but a reinterpretation of what hyperplanes
and points are.

In this section we assume that a hyperplane h in Ed is specified by its nonzero
normal vector a = ((~i, . . . , LYE) and a number, -ad+i, called the offset. Now, a
hyperplane h consists of all points x E Ed such that

(x, a> + ad+1 = 0; (8)

that is, the scalar product of x and a equals the offset. Notice that the hyperplane
does not change if we multiply the normal vector and the offset by some nonzero
number. We define h* as the point whose homogeneous coordinates are
(al,*--, ffd; (Yd+l). Geometrically speaking, h* lies on the line through the origin
defined by a, and the distance of h* from the origin is the inverse of the distance
between h and the origin. This can easily be verified after observing that] (Yd+i]
is the distance between h and the origin, provided a has a unit length. Note also
that the origin lies between h and h* (see Figure 4). Conversely, for a point p
with homogeneous coordinates (xi, 7r2, . . . , ?rd; r&1) we let p* be the hyperplane
with normal vector (ri, 7r2, . . . , rd) and offset -‘?rd+l.

It is straightforward to show that this transformation preserves incidences;
that is, p E h if and only if h* E p*. Indeed, it is a triviality when one remembers
what p E h means algebraically, namely, that

?r*a1 + i?zLyz + . . . + ad(Yd + rd+l&yd+l = 0.

It is equally easy to prove that this mapping preserves the relative order between
a point and a hyperplane. To describe what exactly we mean by this, define

h+ = (X 1 (X, a) + ad+1 > 0) and h- = (X 1 (X, a) + ffd+l < 01,

and call those the positive and negative sides or half-spaces of h. By order
preservation we mean that p E h+ if and only if h* E p*+. Here, a warning is
appropriate to avoid future confusion. If we multiply the normal vector and the
offset of a hyperplane h by -1, we do not change the hyperplane, but we do

ACM Transactions on Graphics, Vol. 9, No. 1, January 1990.

92 - Simulation of Simplicity

Fig. 4. Mapping a line to a point and vice
versa.

4x2

-----&
j / -.--* i I ..” ; Xl

,.” ;

h’=(-1,-l)/” i h:xI+x2-l=0

change the sides of h; what was previously its positive side is now its negative
side and vice versa. We will take advantage of this curiosity by encoding the
positive and negative sides into the hyperplane’s specification. Note that, geo-
metrically, the normal vector of a hyperplane h points to its positive side.

The primitive operation that we wish to tackle in this section is to decide on
which side of a hyperplane hid the intersection of d other hyperplanes
h,,..., hi,-, lies. By the use of SOS, the absence of any kind of degeneracies can
be assumed; so hi0 (c) through hi,-,(c) intersect in a unique point that does not lie
on hid(&). By Cramer’s rule, the intersection point p = (7~1, 7r2, . . . , ad) of d
hyperplanes is given by the coordinates

~, _ det Ad,i
’ det Ad ’

where Ad is the matrix

and Ad,i is the same matrix after replacing the ith column from the left by the
vector

Point p lies in the positive half-space of hd if and only if

Tlaid,l + T2aid,2 + * * * + rd’yid,d + ai,,d+l > 0.

Provided that det Ad is positive, this is equivalent to

det Ad,lCri,,, i- det Ad,z&!i,,z + * * * + det Ad,dCI’i,,d i- det Ada,,,+, > 0.

In case of a negative det A,,, the above statement is valid after reversing the
direction of the inequality. Consequently, p E h,’ if and only if

det Ad+, . det Ad > 0.
ACM Transactions on Graphics, Vol. 9, No. 1, January 1990.

H. Edelsbrunner and E. P. Mticke - 93

This can be seen by developing

aio,l ai,,2 . * * ‘yio,d a&,d+l
,

ai,,1 ail,2 * * ’ ai,,d ai, ,d+ 1

! i *. . ! !

aid--l,l WdT1,2 ’ * ’ %d--l,d ai,-,,d+l

ai,+, aid,2 * ’ ’ a&d ai,,,d+l

using the last row. Now, we can use this to write a procedure that decides on
which side of a hyperplane d other hyperplanes intersect. It uses SOS, as described
in Section 3.3.

Predicate 4 (OnPositiueSide). Let h,+ hi,, . . . , hid be d + 1 hyperplanes in d
dimensions, given as in (8), and with distinct indexes 0 I iO, il, . . . , id 5 n - 1.
The following function, written in pseudocode, returns true if the intersection
fl;f;A hiA lies in the positive half-space of hi,(E), and false if it lies in the
negative one.

function OnPosi~iveSide~(h;,, . . . , IL;,-,; hid) returns Boolean
local i& . . . , &, s’, 6, it, . . . , &, iz, s”, d”
begin

So?q(io,. . .,&I), (ib,. . . ,i&-J, s’)
SOTtd+l ((ii), . . . , i&l, id), (ib’, . . . , &, ih’), 3”)

d’ = SignDetAd

if odd (s’) then d’ t - d’

d” c SignDet&+l

if odd (s”) then d” + - d”
return (d’ = d”)

end

5.3 Nonvertical Hyperplanes
In many applications we know that all hyperplanes we have to deal with are
nonvertical; that is, they intersect the dth coordinate axis in a unique point.
Examples are Voronoi diagrams or, more generally, power diagrams for arbitrary
order and weighted Voronoi diagrams (see, e.g., [2] and [9]). It is beyond the
scope of this paper to describe how the data for those problems are used to
generate hyperplanes; it will be enough to know that they are obtained via
geometric transforms that do not create vertical hyperplanes.

ACM Transactions on Graphics, Vol. 9, No. 1, January 1990.

94 ’ Simulation of Simplicity

A nonvertical hyperplane h in d dimensions can be specified by a relation of
the form

cY1x1+ cY$x~ + - * * + ~d-~&+l + x,j + ‘fd = 0. (9)
The advantage of describing a hyperplane using this form rather than the one in
Section 5.2 is that it takes only d parameters rather than d + 1. This will lead to
some savings when it com’es to computing signs of determinants (cf., e.g., det A4
in Table VI and det A., in Table V). Since every hyperplane h is now nonvertical,
we can uniquely define what we mean when we say that a point lies (vertically)
above or below h. Define

h+ = {x = (x1, . . . , &) 1 Lyl& + . * * + ad-1 + xd + ad > o),

and let h- = Ed - h - h+. A point p is said to lie above h if p E h+ and below h
if p E h-.

The primitive operation that we consider in this section decides whether the
intersection of d hyperplanes hi,, . . . , hi,-, lies above or below hyperplane hi,.
The use of SOS as in Section 3.2 allows us to assume that indeed hi0 through
hid-, intersect in a unique point that does not lie on h;,. A decision procedure
based on comparing the signs of the two determinants can be derived from the
procedure given in Section 5.2. We just replace all &!i,d(&) by 1 and exchange the
last two columns of the second matrix in function OnPositiveSided. This leads to
the following predicate:

Predicate 5 (Above). Let h,, hi,, . . . , hid be d + 1 nonvertical
hyperplanes in Ed, specified as in (8), and with pairwise different indices 0 5 iO,
11, - * . , id 5 n - 1. The following predicate returns true if the point of intersection
flf,h hiA lies above hid(c), and false if it lies below hid(E).

function Aboved(h;,, . . . , hi,-,; hid) returns Boolean
local ib, . . . , &, s’, d’, ii, . . . , izml, iz, s”, d”
begin

SO?dd((iO,. . .,&.I), (5,. . .,&), 3’)
sOTtd+l((i~, . . ., id-]!, id), (ib’, . . . , ilf-pi;), s”)

d’ = SignDethd

if odd (s’) then d’ I- - d’
/ cq’,&)

d” t SignDe&+l

I

. .

q-&
aii,l(e)

if odd (s”) then d” t - 6’
return (d’ # d”)

end
ACM Transactions on Graphics, Vol. 9, No. 1, January 1900.

H. Edelsbrunner and E. P. Mijcke l 95

5.4 In-Sphere Test
In d dimensions any d + 1 affinely independent points (i.e., points that do not
lie in a common hyperplane) define a unique sphere that goes through the d + 1
points. For example, in two dimensions there is a unique circle through any three
noncollinear points. Given d + 2 points po, pl, . . . , pd+l , the problem we address
in this section is how we can determine whether p&l lies inside or outside the
sphere specified by the first d + 1 points, assuming this sphere is unique. Such a
test is useful for constructing Voronoi diagrams (as shown in [15] for
d = 2) and other problems where circles and spheres play a role.

An elegant solution to this problem can be given using a transform that lifts a
sphere in d dimensions to d + 1 dimensions where it is represented by a
hyperplane. This transformation can be traced back in the literature to [21] and
has since been used throughout the computational geometry literature (see [9],
[151, and [191). For the case of circles in the plane, we explain this transformation
in detail and finally phrase the predicate for general dimensions.

Let U: 1c3 = xl + X; be the paraboloid of revolution whose symmetry axis is the
x3-axis, and let

be a circle in the x1x2-plane. Note that (rl, y2) is the center of the circle and y3
is its radius. The lifting map transforms c to the plane c* in three dimensions
given by the equation

c*: x3 = 2%X1 + 2Y2Q - (7:: + -2 - ya.

The quick reader will already have verified that the vertical projection of
U rl c”, which is an ellipse in three dimensions, onto the x13cz-plane is equal to
the original circle c. A point p = (PE, 7rz) lies inside c if and only if its vertical
projection onto U lies below c*. This insight gives us some hope that, in fact, the
problem can be bent such that Predicate 5 from the previous section is applicable.
Before we continue our exploration in this direction, let us understand how the
original statement of the problem and the lifting map are connected. Recall that
there are four original points, which we call po, pl, pz, and p3. The first three
determine the circle c and therefore the plane c*. Moreover, if we project them
vertically onto U, then c* is the plane through these points on the paraboloid U.
The question is now whether pi = (~3,~, ~3,2, 7ri,l + 7rz,2), which is the vertical
projection of p3 onto U, lies below c* (in which case p3 lies inside c) or above c*
(then p3 lies outside c). By the use of SOS, we can assume that the four points
are in general position.

This problem can be mapped to the plane problem of the previous section if
we use a dual transform. This transform replaces each point on U by the unique
plane whose intersection with U is this point. If pi = (7r1, r2, r? + xi), then the
formula for this dual plane is

p*: x3 = 2a1x, + 27r2x2 - (7r:: + VT;).
ACM Transactions on Graphics, Vol. 9, No. 1, January 1990.

96 l Simulation of Simplicity

We see that this is indeed the lifting map applied to point p = (PE, a2) in the
x1x2-plane. This duality transform preserves incidences and above-below order
in a way similar to the duality transform described in Section 5.2. This leaves us
with the following correspondence between the original point-circle problem and
the derived plane-point problem: Point p3 lies inside c (the circle through points
po, pl, and pz) if and only if the intersection point of the planes p,*, p:, and pz
lies below pz. The statement is also valid if we replace “inside c” by “outside c”
and “below p,*” by “above p,* .”

We leave the generalization of this two-dimensional exercise to three and
higher dimensions to the curious reader. In any case, Predicate 5 can now be
used to implement Predicate 6, which formalizes the in-sphere test in d dimen-
sions. If we apply Predicate 5 directly, we will find ourselves computing the sign
of determinants of the form

c 27rg . . . 2rio,d -(& + * f * + 7gd) -1

The sign does not change if we divide the entries in the left d columns by 2.
Similarly, we can remove the minus signs in the last two columns without
changing the sign of the determinant. However, there remains one problem with
determinants of the above type, and this is that the values in the (d + 1)st
column from the left depend on the values in the left d columns. In particular,
with SOS, the e-expressions of the point coordinates appear in mixed products in
the (d + 1)st column. This turns out to be a real pain when we implement SOS
for this type of determinants. A cheap trick that handles this problem is not to
perturb the original points, but rather to perturb the vertical projections onto
the paraboloid in d + 1 dimensions. In effect, this means that we introduce

ri,,d+l ‘= for OsXsd+l (10)

and then perturb the points (ri,,l, . . . , ri,,d, rih,d+l). Because the perturbation
of the (d + 1)st coefficient does not depend on the first d coefficients, this im-
plies that the points are perturbed away from the paraboloid U. On the other
hand, if the perturbation is small enough we are still close enough to the original
situation.

Predicate 6 (InSphere). Let pi,, pil, . . . , pg+, be d + 2 points in d dimensions
with pairwise different indi.ces in the range from 0 through n - 1. The program
below returns true if the perturbed image of pi,,, lies inside the sphere through
the perturbed images of the first d + 1 points, and returns false if it lies outside.

function InSphered (p;, , . . . , p;,; P;~+~) returns Boolean
local i&, . . . , i&, s’, d’, ii,. . . , i&‘, ilf+I, s”, d”

ACM Transactions on Graphics, Vol. 9, No. 1, January 1990.

H. Edelsbrunner and E. P. Mijcke - 97

begin
So&j+1 ((io, . . .) id), (ib, . . .) i&), s’)
sOTtd+2((io,. . .,&id+& (ib’, . . .,ih’, i;+l), 8”)

ri&,l(E) “. ?rih,d(B) ’

d’ = Sign&t&+1 i *a. i i
“;k,l(E) ’ . ’ “ib,d(&) ’

if odd (3’) then d’ +- - d’
Set ?Tix,d+l as in (??).

rit,l(E) ” ’ Tit,d(E) Ai~,d+l(‘) ’
. .

d” t SignDet&+2 .
aii,d;l(E> 1

‘b;+l,~(E) - ’ * ri;+tl,d(E) ‘Ir;;+l,d+l(E) 1

if odd (s”) then d” + - d”
return (d’ # 6’)

end

Note that the rightmost column of the first matrix in the above program
should really consist of -1s. To stress the similarity with predicate Aboued+l in
the previous section, we replaced the -1s by +ls and thus changed the sign of
d’. This effect is compensated by the fact that we want to return true where
function Aboued+l returns false.

6. REMARKS AND DISCUSSION

The main contribution of this paper is the introduction of a general technique
that can be used to deal with degenerate input for geometric programs. The main
purpose of this paper is to demonstrate that this technique (which we call SOS,
the Simulation of Simplicity) is immanently practical, despite its high-powered
appearance. Indeed, the authors believe that SOS will become a standard tool for
implementing geometric algorithms. A pragmatic consequence of this technique
is that authors of geometric algorithms can now be more confident about the
implementability of their algorithms even in the presence of any conceivable
degeneracies, provided SOS is applicable to their algorithms.

This raises the question of determining the limitations of SOS-what are the
properties of an algorithm that allows us to use SOS when we implement it? One
important feature of algorithms that are amenable to SOS is that their algebraic
computations are of constant depth. The deeper the algebraic computation, the
more complicated is the polynomial (or, in general, the function) in E generated
by SOS, and the less tractable is its evaluation. Another limitation of SOS is the
necessity of absolute precision in the evaluation of algebraic formulas. As long
as square roots can be eliminated by squaring the equation and similar techniques
can be used to remove other irrational functions, this is not a problem, but there
are cases where it is not that easy. Typical examples for such problem cases are
algorithms for shortest path problems in a geometric setting. Take, for instance,

ACM Transactions on Graphics, Vol. 9, No. 1, January 1990.

98 l Simulation of Simplicity

two piecewise linear paths i,n the Euclidean plane. The length of each path is the
sum of square roots of integers (assuming the endpoint coordinates are integers).
Deciding which one of the two paths is shorter is a difficult question unless the
number of square roots is very small. On the other hand, deciding which one of
two paths is shorter is not exactly the kind of problems that SOS was invented
for.

Another problem is that algorit.hms employing SOS produce results for the
perturbed set of objects rather than for the original ones. In certain settings,
such as in computer graphics, this fact can often be ignored. However, when
“unperturbed” results are needed, some postprocessing has to be performed. This
paper does not deal with this issue, and further work has to be done. Nevertheless,
in most of the applications mentioned in this paper the postprocessing step is
more or less trivial:

-In the point-in-polygon problem, one can simply add a test of whether or not
the query point lies on a boundary edge.

-In the case of Voronoi diagrams or arrangements of hyperplanes, we identify
and eliminate zero-length edges or higher dimensional faces of zero measure.

-In the convex-hull setting, it is possible to undo the perturbation simply by
merging adjacent faces if necessary; for example, in two dimensions, adjacent
edges that lie on a common line, and in three dimensions, adjacent triangles
contained in a common plane.

It is rather difficult, however, to use SOS or any other perturbation scheme for
finding all data points on the boundary of the convex hull. This is because the
perturbation may decide that a point is inside the hull if it lies on a boundary
edge or face. In this case the point would be prematurely discarded. We refer to
[23] for a more extensive discussion of the limitations of symbolic methods aimed
at resolving robustness problems in geometric algorithms.

In order to increase the credibility of our claim that SOS is indeed a practical
programming tool, the second author compiled a prototype version of a SOS
library [171 and implemented the three-dimensional edge-skeleton algorithm of
[8]. We believe it is fair to say that this algorithm is an extraordinary challenge
for someone who wants to do it without SOS. From run-time profiles of this
program, we learned that most of the computing time was spent on multiplying
long integers in order to compute signs of determinants. The speedup that we
got in our implementation from replacing long integer by normal (built-in) integer
arithmetic was a factor somewhere around 10. Of course, for the normal integer
arithmetic to work we severely restricted the range of the coordinates that were
used. In any case, this makes it clear where future work has to go if we want to
produce programs that are reliable and that are as fast as software that uses
floating-point arithmetic and is therefore inherently unreliable. The most prom-
ising way to eliminate this overhead factor seems to be the design of a special
piece of hardware that computes the sign of determinants for integer matrices.
Such effort seems justified by the versatility of determinants demonstrated in
Section 5. We would like to mention, though, that even without the availability
of such specialized hardware we believe that SOS is of practical value in imple-
ACM Transactions on Graphics, Vol. 9, No. 1, January 1990.

H. Edelsbrunner and E. P. Mijcke l 99

Table III. The 2 Relevant Terms of det A,(E)

t kt . kt Vt det Mfz Et

0 2.2 P, 2; 21 d 1

1 1.1 11, 2; 21 +det(l) = +1 c(i, 1)

Table IV. The 5 Relevant Terms of det AZ(e)

t kt . kt Ut det M:) et

0 3.3 [3, 373; 31

1 2.2 [2, 393; 31

2 2.2 11, 3, 3; 31

3 2.2 P, 2, 3; 31

4 1.1 IL 273; 31 +det(l) = +1

c(i, 2)

4, 1)

4, 2)

c((j, 3, (6 1))

menting geometric algorithms. Aside from the obvious savings in time and effort
for the programmer, it seems to us that the use of SOS is currently the only hope
for producing geometric software that is in any sense reliable.

We end this section by pointing out a new direction for further research: the
systematic study of primitive operations used and needed for geometric algo-
rithms. If one undertook the venture of building a library of primitives for
geometric algorithms, besides computing signs of determinants, what other
operations would have to be in the collection ? Is it even clear that computing
the sign of a determinant is such an indispensable operation, or are there less
expensive ways to determine the orientation of d + 1 points in d dimensions?

APPENDIX

In this appendix we give the relevant subdeterminants, sorted in sequence of
decreasing significance, needed for computing the signs of det AZ(&), det A,(E),
det Ad(c), and det A,(e). Each sequence is given in Tables III, IV, V, and VI,
respectively, which also show the corresponding c-product et and the size k, of
the matrix Mpd (Mp) associated with the (t + 1)st significant term in the
&-polynomial det A,(E) (det A,(E)). The third column of each table shows ut, the
vector that encodes the subdeterminant of depth t. Recall that this vector was
used to produce the proper sequences of subdeterminants by successive calls of
procedure Next-u.

ACM Transactions on Graphics, Vol. 9, No. 1, January 1990.

100 l Simulation of Simplicity

Table V. The 15 Relevant Terms of det A,(c)

t kt . kt 0, det M: Et

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

4.4

3.3

3.3

3.3

3.3

2.2

2.2

3.3

2.2

3.3

3.3

2.2

2.2

2.2

1.1

[4, 4, 4, 4; 41

[3, 4, 4, 4; 41

[2, 4, 4, 4; 41

1194, 4,4;41

[3,3, 4, 4; 41

12, 3, 4, 4; 41

11, 3,4,4;41

P, 2,4, 4; 41

L 2,4,4; 41

11, L4, 4;41

[3,3, 3, 4;41

12, 373, 4; 41

11, 3, 3,4;41

P, 2, 3,4; 41

+det z::
1

(. > 1

4 3)

c(i, 2)

4 1)

4i 3)

4(j, 3), (i, 2))

4(i, 31, (i, 1))

dj, 2)

4t.L 21, (6 1))

4i, 1)

&3)

4% 3), (i, 2))

et&, 3), (i, 1))

4k 3), (i, 2))

u, 2, 3,4;41 +det(l) = +l c((k, 3), (i, 2), 6, 1))

ACM Transactions on Graphics, Vol. 9, No. 1, January 1990.

H. Edelsbrunner and E. P. Miicke l 101

Table VI. The 50 Relevant Terms of det Ad(c)

t kt . kt 0, det MP’ et

0

1

2

3

4

5

6

1

8

9

10

11

12

13

14

15

4.4

3.3

3.3

3.3

3.3

3.3

2.2

2.2

2.2

3.3

2.2

2.2

3.3

2.2

3.3

3.3

15, 5, 5, 5; 51

[4,5, 5, 5; 51

[3, 5765; 51

P, 5,5, 5; 51

[l, 5,5, 5; 51

[4,4,5,5; 51

[3,4,5, 5; 51

1% 4, 5, 5; 51

L 4,595; 51

[3,3, 5, 5; 51

P, 375, 5; 51

L 3, 5, 5; 51

[2,2, 5, 5; 51

L2, 5, 5; 51

L 1, 5, 5; 51

[4, 494, 5; 51

4 1

di, 4)

ek 3)

e(i, 2)

& 1)

c(j, 4)

c((j, 41, (i, 3))

e((j, 4), (i, 2))

d(j, 41, (i, 1))

4, 3)

c((j, 3), (i, 2))

c((j, 31, 6, 1))

e(j, 2)

c((j, 3, 6, 1))

dj, 1)

ACM Transactions on Graphics, Vol. 9, No. 1, January 1990.

102 l Simulation of Simplicity

Table VI-Continued

t k, . k, u, det MP’ Q

17

19

20

21

22

23

24

25

26

27

tla

29

30

31

32

33

34

35

36

2.2

2.2

2.2

2.2

1.1

1.1

2.2

1.1

2.2

3.3

2.2

2.2

2.2

1.1

2.2

3.3

2.2

2.2

3.3

3.3

2.2

[3,4,4,5; 51

[2,4,4,5; 51

D, 494, 5; 51

[3,3, 4, 5; 51

P, 3,4,5; 51

[l, 394, 5; 51

P&2, 4,5; 51

P, 2,4,5; 51
11, 1,495; 51

[3,3,3,5; 51

[2,3,3,5; 51

[l, 3,395; 51

P, 2,375; 51

L 2,3, 5; 51

P, 1, 3,5; 51

12, 2,295; 51

P, 2, 2,5; 51

L 1, 2, 5; 51

[l, 1, 175; 51

[4,4,4,4; 51

[3,4, 4, 4; 51

-det(d = -Q
+Ww) = +w

+det(d = +w

4(k, 4), (i, 3))

4th 4L 6, 2))

4th 41, (6 1))

c((k, 41, CL 3))

d(k, 4), (i, 3), (6 2))

c((k, 41, (i, 3), (6 1))

c((k, 4h (i, 2))

c((k, 4), (j, 2), (i, 1))

c((k, 4L (i, 1))

4k 3)

4@, 3), (i, 2))

4k 3), 6, 1))

et&, 3h (j, 2))

c((k, 3), (j, 2), (i, 1))

4% 3), (j, 1))

&, 2)

4k 3, (6 1))

c((k, 3, (i, 1))

c(k, 1)

41, 4)

E(U, 4), (i, 3))

ACM Transactions on Graphics, Vd. 9, No. 1, January 1990.

H. Edelsbrunner and E. P. Mijcke l 103

Table VI-Continued

t kt . kc 4

38 2.2 P, 4,474; 51

40 1.1 12, 3,494; 51

41 1.1 L 3,4, 4; 51

42 2.2 [2,2,4,4; 51

45 2.2 [3,3, 394; 51

46 1.1 [2,3, 394; 51

47 1.1 L3, 394; 51

48 1.1 12, 2, 3, 4; 51

49 0.0 1192, 394; 51

det M> et

c(U, 4), (i, 2))

E(U, 4), (i, 1))

~((1, 4), (i, 3))

+det(%,l) = +rk,l

-det(*k,,) = -*k,Z

c((Z, 4), (j, 3), (i, 2))

~((1, 4), (i, 31, (i, 1))

4(1,4), (i, 2))

+det(*k,s) = +*k,3 c((l, 4), (i, 21, 6, 1))

ECU, 41, (i, 1))

4U, 4), k 3))

-det(rj,,) = rj.1

+det(rj,l) = +rj,z

+det(ri,i) = +?r;,i

+det() = +l

4th 41, (k, 3h 6, 2))

4th 41, (k 31, (6 1))

e((Z, 41, (k, 31, (i, 2))

~((1, 41, k 31, (i, 2h (i, 1))

REFERENCES
1. AHO, A. V., HOPCROFT, J. E., AND ULLMAN, J. D. The Design and Analysis of Computer

Algorithms. Addison-Wesley, Reading, Mass., 1974.
2. AURENHAMMER, F., AND IMAI, H. Geometric relations among voronoi diagrams. Tech. Rep.

228, Institute fur Informationsverarbeitung, Technische Universitat Graz, Austria, 1986.
3. CHARNES, A. Optimality and degeneracy in linear programming. Econometrica 20, 2 (April

1952), 160-170.
4. CHVATAL, V. Linear Programming. Freeman, San Francisco, Calif., 1983.
5. CHVATAL, V., AND KLINCSEK, G. Finding largest convex subsets. In Proceedings of the 11th

Southeastern Conference on Combinatorics, Graph Theory and Computing. 1980, pp. 453-460.
6. DANTZIG, G. B. Linear Programming and Extensions. Princeton University Press, Princeton,

N.J., 1963.
7. DANTZIG, G. B., ORDEN, A., AND WOLFE, P. The generalized simplex method for minimizing a

linear form under linear inequality restrictions. Pac. J. Math. 5, 2 (June 1955), 183-195.
8. EDELSBRUNNER, H. Edge-skeletons in arrangements with applications. Algorithmica 1,l (1986),

93-109.
9. EDELSBRUNNER, H. Algorithms in Combinatorial Geometry. Springer-Verlag, Heidelberg, West

Germany, 1987.
10. EDELSBRUNNER, H., AND GUIBAS, L. J. Topologically sweeping an arrangement. In Proceedings

of the 18th Annual ACM Symposium on Theory of Computation. 1986, pp. 389-403.
11. EDELSBRUNNER, H., AND WAUPOTITSCH, R. Computing a ham-sandwich cut in two dimensions.

J. Symbolic Comput. 2, 2 (June 1986), 171-178.
12. FORREST, A. R. Computational geometry in practice. In Fundamental Algorithms for Computer

Graphics, E. A. Earnshaw, Ed. Springer-Verlag, Berlin, West Germany, 1985, pp. 707-724.
13. GOLUB, G. H., AND VAN LOAN, C. F. Matrix Computations. Johns Hopkins University Press,

Baltimore, Md., 1983.
ACM Transactions on Graphics, Vol. 9, No. 1, January 1990:

104 l Simulation of Simplicity

14. GOODMAN, J. E., AND POLLACK, R. Multidimensional sorting. SIAM J. Cornput. 12, 3 (Aug.
1983), 484-507.

15. GUIBAS, L. J., AND STOLFI, J. Primitives for manipulation of general subdivisions and the
computation of Voronoi diagrams. ACM Trans. Graph. 4, 2 (April 1985), 74-123.

16. KNUTH, D. E. The Art of Computer Programming. Vol. 2, Seminumerical Algorithms. Addison-
Wesley, Reading, Mass., 1969.

17. MOCKE, E. P. SOS-A first implementation. Master’s thesis, Department of Computer Science,
Univ. of Illinois at UrbanaChampaign, Urbana, Ill., Sept. 1988.

18. PREPARATA, F. P., AND HONG, S. J. Convex hulls of finite sets of points in two and three
dimensions. Commun. ACM 20,2 (Feb. 1977), 87-93.

19. PREPARATA, F. P., AND SHAMOS, M. I. Computational Geometry-An Introduction. Springer-
Verlag, New York, 1985.

20. SEIDEL, R. A convex hull algorithm optimal for point sets in even dimensions. Tech. Rep.
81-14, Dept. of Computer Science, Univ. of British Columbia, Vancouver, British Columbia, 1981.

21. SEIDEL, R. On the size of closest-point Voronoi diagrams. Tech. Rep. F94, Institute fur
Informationsverarbeitung, Technische Universitat Graz, Austria, 1982.

22. SEIDEL, R. Constructing higher-dimensional convex hulls in logarithmic cost per face. In
Proceedings of the 18th Annual ACM Symposium on Theory of Computing (Berkeley, CA, May
28-30), 1986, pp. 484-507.

23. YAP, C. K. Symbolic treatment of geometric degeneracies. In Proceedings of the 13th ZFZP
Conference on System Modeling and Optimization (Chuo Univ., Tokyo, Aug. 31-Sept. 4), 1987.

24. YAP, C. K. A geometric consistency theorem for a symbolic perturbation scheme. In Proceedings
of the 4th Annual ACM Symposium on Computational Geometry (Urbana, Ill., June 6-8, 1988),
pp. 134-142.

Received May 1987; revised Ma:y 1988; accepted June 1988

Editor: Martti Mlntyla

ACM Transactions on Graphics, Vol. 9, No. 1, January 1990.

